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Abstract

We describe four broad characterizations of subjective probability calibration (overconfidence, conservatism, ecologically perfect
calibration, and case-based judgment) and show how Random Support Theory (RST) can serve as a tool for representing, evalu-
ating, and discriminating between these perspectives. We present five studies of probability judgment in a simulated stock market
setting and analyse the calibration data in terms of RST parameters. The observed pattern of calibration varies with the outcome
base rate and cue value diagnosticity, as predicted by case-based judgment. A similar pattern of calibration is found in real-world
judgments of experts in various domains. Case-based RST—defined as RST with stable parameter values—provides a parsimonious
account of the substantial changes in calibration performance observed across different judgment environments.
� 2005 Elsevier Inc. All rights reserved.
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Introduction

In modern society, both experts and laypeople are
regularly faced with making probabilistic judgments
about financial, medical, and personal outcomes. When
are such probability judgments likely to be calibrated,
and how might they be improved? These questions have
fascinated decision researchers for decades, and con-
tinue to provoke controversy. After a brief review of
several broad competing perspectives on the calibration
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of subjective probabilities, we introduce a general model
of calibration that extends Support Theory (Fox &
Tversky, 1998; Rottenstreich & Tversky, 1997; Tversky
& Koehler, 1994)—a general coherence model of subjec-
tive probability—to the question of the correspondence

between stated probabilities and actual outcomes. We
then present five studies demonstrating the use of this
model, Random Support Theory (RST), both as a gen-
eral theoretical framework and as a practical tool for
characterizing and discriminating between different ac-
counts of calibration. Finally, we compare the results
of the laboratory studies with the calibration of experts
in various domains making real-world judgments.

Divergent characterizations of calibration

Probability judgments of uncertain events are said to
be perfectly calibrated if each set of events assigned a
common probability judgment of p is in fact associated
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Fig. 1. Calibration curves illustrating distinct patterns of calibration
and miscalibration (generated by RST simulations) Note. Five curves
based on RST simulation assuming no focal bias (b = 0), and fixed
judgmental extremity (r = 1). Over/underprediction curves con-
structed assuming fixed discriminability (a = 1) with varying target
event base rate (BR = 20% for overestimation; BR = 80% for under-
estimation). Over/underextremity curves constructed assuming fixed
base rate (BR = 50%) with varying discriminability (a = 0.5 for
overextremity; a = 2.0 for underextremity).
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with a corresponding relative frequency of p. We sum-
marize four broad and conflicting characterizations
about the calibration of probability judgment that have
been offered in the literature (for integrative reviews and
discussion see, e.g., Keren, 1991; Klayman, Soll, Gonz-
alez-Vallejo, & Barlas, 1999; Lichtenstein, Fischhoff, &
Phillips, 1982; Yates, 1990). While it is generally recog-
nized that no single perspective will fully account for all
data, there are nevertheless general claims often made
about the prototypical or central results in calibration
studies. We present these four broad characterizations
to summarize the most common themes.

Overconfidence
One characterization, consistent with the results of

scores of laboratory calibration studies, is that people
are generally overconfident. For example, when proba-
bilities between 0.5 and 1.0 are assigned to an option
chosen from a pair of alternatives (the so-called half-
range paradigm), average judged probabilities (e.g.,
.75) are typically associated with accuracy rates that
are considerably lower (e.g., .60). Overconfidence is seen
by many as perhaps the prototypical summary finding
within the calibration literature: ‘‘it is often believed that
people�s judgments are routinely overconfident’’ (Yates,
1990, p. 94), and ‘‘overconfidence is a reliable, reproduc-
ible finding’’ (Von Winterfeldt & Edwards, 1986, p.
539). The belief in overconfidence as a general feature
of human judgment has spread well beyond the aca-
demic psychological literature; when describing investor
behavior in the stock market, for example, Shiller (2000)
commented that ‘‘some basic tendency toward overcon-
fidence appears to be a robust human character trait’’
(p. 142).

At the process level, one common interpretation of
the prevalence of overconfidence is that people tend to
recruit evidence that confirms their focal hypothesis
(e.g., the confirmatory bias model of Koriat, Lichten-
stein, & Fischhoff, 1980). Another common interpreta-
tion is that people are generally optimistic, and thus
tend to systematically overestimate the likelihoods of
hoped-for or desirable events (e.g., Weinstein, 1980).

There are two distinct forms of overconfidence when
probabilities are assigned to a focal hypothesis on the
full 0 to 1 probability scale (Liberman & Tversky,
1993; Wallsten & Budescu, 1983): (a) overestimation (de-
picted in curve A in Fig. 1), the tendency to assign prob-
abilities that are consistently too high; and (b)
overextremity (depicted in curve C in Fig. 1), the ten-
dency to assign probabilities that are consistently too
extreme (i.e., too close to either 0 or 1). Consistent over-
estimation of the focal hypothesis is predicted by the
confirmatory bias account of overconfidence; overesti-
mation of desirable events and underestimation of unde-
sirable events is predicted by the optimism account of
overconfidence.
Overextremity is consistent with the notion that peo-
ple�s beliefs do not sufficiently incorporate the uncer-
tainty of their knowledge (Kahneman & Tversky,
1973). Insensitivity to such uncertainty also can account
for the difficulty effect (Lichtenstein et al., 1982), the
common finding that overconfidence is more substantial
for difficult questions and is reduced (or reversed) with
easier questions. Another interpretation of overextrem-
ity (and the difficulty effect) is that underlying beliefs
may be perfectly calibrated but judgments are neverthe-
less too extreme because error is introduced in the re-
sponse process (Erev, Wallsten, & Budescu, 1994; Soll,
1996; see also Brenner, 2000), or because judgment items
are not representative of the domains to which people
are adapted (Juslin, Winman, & Olsson, 2000).

Conservatism

A second and apparently contradictory characteriza-
tion of calibration performance follows from classic
studies investigating Bayesian updating (e.g., Phillips
& Edwards, 1966). These studies indicated that people
are overly conservative in that they are insufficiently sen-
sitive to new diagnostic information. The phenomenon
of conservatism implies underextremity (curve D in
Fig. 1); people will overuse the middle of the probability
scale (near .5) and underuse the extremes (near 0 and 1).
A similar pattern of underextreme judgments also ap-
pears in studies of perceptual frequency estimation
(e.g., Hollands & Dyre, 2000).
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Erev et al. (1994) note that, depending on the method
of data analysis, one may simultaneously observe both
apparent overextremity and underextremity with the
same set of data. For example, if objective probability
(OP) is predicted from subjective probability (SP), as
is typical in most calibration research, one may observe
overextremity. With the very same data, however, if SP
is predicted from OP—as when there are reliable norma-
tive standards of the correct probabilities of the judged
events—one may observe underextremity. To avoid this
potential confusion, throughout our discussion, we will
always assume the traditional OP-as-a-function-of-SP
analysis approach when characterizing patterns of cali-
bration performance. Thus, the patterns in Fig. 1, and
the terms overconfidence, underconfidence, overextrem-
ity, and underextremity are meant to depict distinct pat-
terns of calibration performance that are not
attributable to differences in the method of data
analysis.

Good calibration through ecological adaptation

A third characterization of calibration performance is
that, when judgment items are representatively drawn
from a well-specified reference class, people�s probability
judgments tend to be well-calibrated (curve E in Fig. 1).
The main premise of such ecological perspectives (e.g.,
Björkman, 1994; Gigerenzer, Hoffrage, & Kleinbölting,
1991; Juslin, 1994) is that through interaction with the
environment, people internalize the associations be-
tween cues and events in the world and use this internal-
ized knowledge when judging event probabilities.
According to this view, laboratory observations of poor
calibration are largely attributable to methodological
artifacts such as the biased selection of judgment items.
‘‘If the set of general-knowledge tasks is randomly sam-
pled from a natural environment, we expect overconfi-
dence to be zero’’ (Gigerenzer et al., 1991, p. 512).
Hybrid models in this tradition supplement the ecologi-
cal approach with notions of error to describe how
uncertainty due to sampling, as well as error in the sen-
sory or response process can lead to observed overex-
tremity despite well-calibrated underlying beliefs
(Juslin & Olsson, 1997).

Case-based judgment

Finally, a fourth characterization is that, in making
intuitive judgments of probability, people use simple
mental operations (commonly called heuristics) that
are sensitive to some features of the information envi-
ronment, but insensitive to others (Kahneman & Tver-
sky, 1973; Tversky & Kahneman, 1974), producing
predictable patterns of calibration and miscalibration
across different judgment environments (Griffin &
Tversky, 1992; Massey & Wu, 2005). In particular, the
case-based judgment perspective asserts that people�s
judgments rely primarily on evidence regarding the
particular case at hand and tend to neglect relevant
aggregate properties associated with the class of in-

stances to which the case belongs. For example, a physi-
cian asked to assess a patient�s risk of a certain medical
condition will generally invoke (case-based) features of
the patient, such as her health history and diet. In con-
trast, the physician is less likely to invoke (class-based)
features that are merely seen as characteristic of the lar-
ger set of instances from which the case is drawn, such as
the fact that the disease is very common nationwide.

In certain cases, aggregate characteristics may be con-
sidered as arguments in a case-based evaluation (Ajzen,
1977); for example, the base rate of a medical condition
may be one argument considered by a physician (‘‘there
is a lot of that going around’’). However, such usage
typically will lead to underweighting of the class data
compared to the ideal statistical model. Judgment may
proceed by first forming a case-based impression, and
then making a small, typically insufficient adjustment
to account for class factors. Consistent with this view,
Novemsky and Kronzon (1999) found that when base
rates were used in a within-subjects design, they were
used in an additive manner, rather than in the multipli-
cative manner required by the Bayesian model.

A model that incorporates both the effect of aggre-
gate properties on the event outcome, and simulta-
neously the neglect of these properties by the judge,
allows one to predict when probabilistic judgment will
be appropriately calibrated, too high, too low, overly ex-
treme, or insufficiently extreme (Griffin, Gonzalez, &
Varey, 2000; Koehler, Brenner, & Griffin, 2002). Contin-
gent on the features of the judgment environment, such
a case-based model can predict the conditions under
which each of the diverse patterns of judgment displayed
in Fig. 1 are likely to be observed.

Each of the four alternative views described above
can be characterized parsimoniously with Random Sup-
port Theory (RST), to which we now turn.

Support theory

Rather than attaching probabilities to events, Sup-
port Theory (Rottenstreich & Tversky, 1997; Tversky
& Koehler, 1994) attaches subjective probabilities to
descriptions of events, which are termed hypotheses.
The construct of evidential support is introduced as an
intermediary between hypotheses and judged probabil-
ity. Each hypothesis A is assigned a support value
s (A) > 0 which is interpreted as a measure of the
strength of evidence for that hypothesis. The judged
probability that hypothesis A rather than hypothesis B
holds, assuming one and only one of them obtains, is
given by

P ðA;BÞ ¼ sðAÞ
sðAÞ þ sðBÞ : ð1Þ
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In this representation, likelihood judgment reflects an
assessment of the balance of evidence favoring the focal
hypothesis rather than the alternative hypothesis. Previ-
ous work has investigated properties of this representa-
tion, and also properties of the support scale s(Æ)
(Brenner & Koehler, 1999; Brenner & Rottenstreich,
1999; Fox, 1999; Koehler, 1996, 2000; Koehler, Brenner,
& Tversky, 1997; Macchi, Osherson, & Krantz, 1999;
Sloman, Rottenstreich, Wisniewski, Hadjichristidis, &
Fox, 2004; for a review, see Brenner, Koehler, & Rotten-
streich, 2002).

Support theory in its general form addresses the
coherence of a set of probability judgments rather than
their correspondence to the actual likelihood of out-
comes as assessed in calibration analyses. To apply sup-
port theory to the study of calibration, Brenner (1995,
2003) developed a stochastic extension—Random Sup-
port Theory—that can model the calibration of subjec-
tive probabilities.
Random support theory

RST represents support as a random variable in order
to reflect variability in perceived evidence strength across
judgment items and judgment occasions. Similar to the
approaches of Ferrell and McGoey (1980), Wallsten
and Gonzáles-Vallejo (1994), and Budescu, Wallsten,
and Au (1997), RST uses a signal-detection framework
in which different distributions of support represent the
strength of evidence for sets of correct and incorrect
hypotheses. Unlike signal detection theory and these
other models, however, RST does not invoke variable
thresholds for converting the underlying random vari-
able into a judgment; rather, support is mapped directly
into a probability judgment based on the support theory
representation in Eq. (1). This yields a parsimonious
model in which the parameters of the underlying distri-
butions of support can characterize distinct aspects of
the judge�s calibration performance. Furthermore, the
underlying random variable is interpretable as support,
which yields important psychological implications for
the relationship between evidence judgment (which does
not involve uncertainty) and probability judgment. We
elaborate further on some of the similarities and differ-
ences between the related families of stochastic calibra-
tion models in the General Discussion.
Distributions of support in RST

We now describe the distributions of support needed
to specify RST for full-range judgment tasks; Brenner
(2003) addressed k-alternative tasks. Consider a judge
estimating P (A,B), the probability of focal hypothesis
A relative to alternative hypothesis B. Suppose, as in
the experiments described below, that hypothesis
A = ‘‘the price of Company X�s stock will increase in
the next financial quarter’’ and hypothesis B = ‘‘the
price of Company X�s stock will decrease in the next
financial quarter.’’ RST specifies distributions for s(A)
and s(B) under two circumstances: when A is in fact true
and when B is in fact true. We will denote the actual out-
come with a lower-case subscript; let Aa denote the (cor-
rect) ‘‘increase’’ hypothesis when the stock will actually
increase, whereas Ba denotes the (incorrect) ‘‘decrease’’
hypothesis when the stock will actually increase. Simi-
larly, Ab denotes the (incorrect) ‘‘increase’’ hypothesis
when the stock in fact decreases, whereas Bb denotes
the (correct) ‘‘decrease’’ hypothesis.

Support, representing the strength of evidence for a
hypothesis, is necessarily non-negative. A convenient
way of accommodating this constraint is to assume that
the natural logarithm of support follows a normal distri-
bution. RST is then easily described in terms of the distri-
butions of the natural logarithm of support, rather than
support itself, as follows (and displayed graphically in
Fig. 2).
When A is correct:

ln sðAaÞ is normally distributed with mean
ðaþ bÞr and standard deviation r: ð2aÞ

ln sðBaÞ is normally distributed with mean 0
and standard deviation r: ð2bÞ

When B is correct:

ln sðAbÞ is normally distributed with mean
br and standard deviation r: ð2cÞ

ln sðBbÞ is normally distributed with mean
ar and standard deviation r: ð2dÞ

Because support can be rescaled by an arbitrary con-
stant multiplicative factor, log-support can be shifted
by an additive constant without any loss of generality.
Hence, the key feature in the specification of these distri-
butions is the difference in the mean log-support for cor-
rect versus incorrect hypotheses. Using Eq. (1), the log-
odds of the observable judged probability P (A,B) can
be represented as the log of the ratio of support values:

ln
P ðA;BÞ

1� PðA;BÞ

� �
¼ ln

sðAÞ
sðAÞþsðBÞ

sðBÞ
sðAÞþsðBÞ

 !
¼ ln

sðAÞ
sðBÞ

� �
: ð3Þ

Furthermore, the distributions of the log of the sup-
port ratios can then be determined from the distribu-
tions (2a) through (2d), assuming independence of ln
s (Ai) and ln s (Bi):

ln
sðAaÞ
sðBaÞ

� �
is normally distributed with mean

ðbþ aÞr and variance 2r2: ð4aÞ



Fig. 2. Log-support distributions assumed by random support theory for focal hypothesis A (thick lines) and alternative hypothesis B (thin lines),
conditioned on either A being true (top panel) or on B being true (bottom panel), illustrating role of RST parameters a and b. Note. Figure was
constructed assuming r = 1. Discriminability parameter a reflects the added support for a hypothesis when it is correct rather than incorrect; focal
bias parameter b reflects added support for a hypothesis when it is the focal rather than the alternative hypothesis in the judgment.
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ln
sðAbÞ
sðBbÞ

� �
is normally distributed with mean

ðb� aÞr and variance 2r2: ð4bÞ

The assumption of independence requires no loss of
generality in representing the judged probabilities, be-
cause any correlation (except q = 1) between the two
log-support values can be absorbed into the variance
parameter r2.

In summary, RST entails that the log-odds of judged
probabilities will follow a particular distribution when
the focal hypothesis A is correct (Eq. (4a)), and a sepa-
rate distribution when the alternative hypothesis B is
correct (Eq. (4b)). The parameters associated with these
two distributions (a, b, and r) can be estimated from the
empirical conditional distributions of the judged
probabilities.

Interpretations of parameters

The psychological interpretations of the RST param-
eters a, b, and r follow from the specifications above in
(2a) through (2d), and are displayed in Fig. 2. The dis-

criminability parameter a is the additional support (in
standardized log units) that is attached to the correct
hypothesis relative to the incorrect hypothesis; hence it
represents the judge�s ability to view the correct hypoth-
esis as being more strongly supported by the evidence.
The parameter a is closely related to measures of discrim-
inability from other analysis approaches. For example,
when the base rate of the focal event is 50%, a is equal
to d 0 from a signal detection analysis where the judge
simply determines which of the two hypothesis is more
likely. The discriminability parameter a is also a linear
transformation of the ordinal correlation measure of dis-
criminability suggested by Liberman and Tversky (1993).
The focal-bias parameter b is the additional support
(again, in standardized log units) that is attached to
the focal hypothesis A, regardless of whether it is correct
or not. Positive values of b indicate a tendency to give
systematically larger judgments to the focal hypothesis.
As will be seen below, the appropriate value of b for
good calibration will depend on the base-rate of the fo-
cal event. As such, a non-zero value for b does not nec-
essarily indicate bias in the sense of an error or
inaccuracy; it simply indicates a systematic shift in sup-
port for the focal hypothesis, regardless of the hypothe-
sis�s occurrence or non-occurrence.

Note also that the interpretation of b depends clo-
sely on the nature of the events that are judged. If a
set of judgments always entails the same focal hypoth-
esis (e.g., a meteorologist judging the probability of
rain, or an economist judging the probability of reces-
sion), then b is interpretable as the overall additional
support towards that particular hypothesis. Given a
consistent focal hypothesis for a set of judgments, b
does not necessarily indicate an overall bias towards
hypotheses in the focal position; rather it indicates a
bias towards the specific hypothesis that is repeatedly
evaluated as the focal hypothesis in that judgment task.
Therefore, the presence of a non-zero b in a task with a
common focal hypothesis does not necessarily imply
violations of binary complementarity in probability
judgment, one of the assumptions of support theory
(cf. Macchi et al., 1999; Brenner & Rottenstreich,
1999); indeed, the representation of judged probability
as balance of support (Eq. (1)) that RST takes from
support theory implies binary complementarity. In
alternative representations which do not assume binary
complementarity, an overall shift in support for what-
ever appears as the focal hypothesis could be reflected
in b.



Table 1
Predicted RST parameter values for alternate perspectives on
probability calibration

1. Overconfidence
a. Overestimation b > b* in all conditions
b. Overextremity r > r* in all conditions

2. Conservatism r < r* in all conditions
(Underextremity)

3. Ecological Rationality b = b* and r = r*

(Good calibration) under representative sampling

4. Case-based judgment ob
oBR <

ob�

oBR and or
oa <

or�
oa ¼ 1
� �

across all conditions.
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The extremity parameter r is the standard deviation of
log-support for each of the four hypotheses Aa, Ab, Ba,
andBb. This parameter represents extremity of judgment;
as the variability of log-support increases, the variability
of judged probability also increases, and the judge tends
to use the extremes of the probability scale more often.
The intuition for this interpretation is that larger values
of r imply a greater likelihood that the support for the fo-
cal hypothesis and the support for the alternative hypoth-
esis will be highly divergent, and therefore yield a
probability judgment near the extremes of 0 or 1.

The final parameter needed to specify the model is the
outcome base rate, denoted BR, which is an exogenous
feature of the judgment environment.

Illustrating RST

We illustrate the interpretation of the RST parameters
by fitting the model to a well-known data set from Keren
(1987), who studied calibration in amateur and expert
bridge players� judgments of the probability of success-
fully fulfilling bridge contracts. Using the group-level
mean calibration data from Keren (1987), we determined
the optimal RST parameter estimates (to minimize
weighted squared deviations between predicted and ac-
tual performance, for each of the two groups of judges).
The resulting RST parameter estimates demonstrate psy-
chologically meaningful differences between the predic-
tion performance of amateurs and experts. In terms of
discriminating between contracts that would succeed
and those that would fail, experts (a = 0.96) were sub-
stantially better than amateurs (a = 0.59). Both groups
were about equally successful in achieving the proposed
contracts (experts 55%, and amateurs 60%), presumably
because the experts were more ambitious and aggressive
in their bidding and attempted to achieve more difficult
contracts. Despite their similar success rates, amateurs
were far more optimistic (b = 0.95) about the success
of contracts than were experts (b = �0.05), who showed
essentially no bias towards the focal hypothesis. Finally,
amateurs were substantially more extreme in their prob-
ability judgments (r = 1.34) than were experts
(r = 0.90). Equivalently, amateurs were relatively more
confident in whatever they judged to be most likely
(either success or failure of the contract). Ferrell (1994)
provides an analysis of the Keren (1987) study using
the decision-variable partition model of calibration,
yielding similar conclusions, but in terms of the cutoff
parameters that characterize that model of calibration.

Values of RST parameters required for Bayesian

judgment

Given a particular outcome base-rate and level of dis-
criminability a, there exist values of b = b* and r = r*

within RST that will produce Bayesian and hence per-
fectly calibrated judgments. Algebraically, these optimal
values can be determined by matching the judged prob-
ability predicted by the model to the objective Bayesian
probability of the outcome derived from the support dis-
tributions in (4a) and (4b). Consider an arbitrary judged
probability P ðA;BÞ ¼ 1

1þexpð�jÞ so that the judged log-

odds are expressible as j ¼ ln PðA;BÞ
1�PðA;BÞ

� �
. Bayes�s rule

can be used to determine the actual log-odds of A being
correct conditional on the judged log-odds j. Setting the
actual log-odds equal to the judged log-odds allows us
to solve for the optimal RST parameters r* and b* that
imply perfect Bayesian judgment. As shown in Appen-
dix A, these optimal RST parameters are:

r� ¼ a; b� ¼ 1

a
ln

BR

1� BR

� �
: ð5Þ

Thus, for perfect calibration the optimal extremity
parameter r* must precisely follow (indeed, exactly
equal) the discriminability parameter a, and the optimal
bias parameter b* must follow the outcome base rate
(transformed to log-odds and also scaled by a). Appen-
dix A provides the full derivation and some intuitions
for these results.

Using RST to model alternative characterizations of

calibration

Having identified the optimal b* and r* for perfect
calibration, the four characterizations of calibration de-
scribed previously can now be expressed in terms of
RST. Table 1 depicts these four accounts in the form
of constraints on the RST parameters. Overconfidence
in the form of overestimation (curve A in Fig. 1) implies
that b is consistently greater than the optimal b*. Over-
confidence in the form of overextremity (curve C) im-
plies that r is systematically greater than its optimal
value, r* = a. In contrast, underextremity associated
with conservatism (curve D) implies r < a. Under condi-
tions of representative sampling of judgment items, eco-
logical models imply perfect calibration (the diagonal
line E), reflected in RST by b = b* and r = r*.

Finally, the case-based judgment account implies that
support (and hence judged probability) primarily reflects
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the evidence related to the particular case at hand, and
thus is generally insensitive to aggregate statistical prop-
erties of the set of judgment items such as outcome base
rate and discriminability as determined by the diagnos-
ticity of the available evidence. According to this ac-
count, the parameters of the RST model that
normatively ‘‘ought’’ to reflect the judge�s internaliza-
tion of these aggregate properties for good calibration
(b and r) will instead remain roughly constant, despite
changes in environmental features that influence the
outcome base rate (BR) or evidence diagnosticity (a).
As a result, depending on the specific levels of evidence
diagnosticity and base rate, the case-based judgment
model predicts good calibration (E) when both base rate
and diagnosticity are moderate; overprediction (A)
when base rate is low; overextremity (C) when diagnos-
ticity is low; underprediction (B) when base rate is high;
and underextremity (D) when diagnosticity is high.

Indeed, the particular patterns of miscalibration
shown in Fig. 1 were generated by RST by holding con-
stant the values of the parameters b and r while varying
the values of the outcome base rate BR and discrimina-
bility a. In all cases, the parameters were fixed at b = 0
and r = 1. Overprediction (curve A, with b > b*) was
generated by a low base rate (BR = 20%) and underpre-
diction (curve B, with b < b*) by a high base rate
(BR = 80%), both with moderate discriminability
(a = 1) that was appropriately matched by r (i.e.,
r = r* = 1). Overextremity (curve C, with r > r*) was
generated by a low value of discriminability (a = 0.5),
and underextremity (curve D, with r < r*) by a high va-
lue of discriminability (a = 2.0), both with moderate
base rate (BR = 50%) that was appropriately matched
by b (i.e., b = b* = 0).

In the studies that follow, we examine calibration
data from a simulated stock market prediction task
in order to discriminate between the four different char-
acterizations of calibration. We fit RST to the individu-
al-level data and compare the resulting parameter
estimates across experimental manipulations of base
rate and evidence diagnosticity to test the predictions
of the four characterizations of calibration listed in
Table 1.

Overview of stock market studies

We present five studies conducted in a web-based
simulated stock market setting in which participants
predicted the direction of stock price changes for a series
of companies. For each company, participants received
case-specific sales and cost information. High sales and
low costs were associated with increases in stock prices,
and low sales and high costs were associated with de-
creases in stock prices, as one might expect. The magni-
tude of this association (i.e., the diagnostic value of the
cues), however, was learned from experience in the sim-
ulated stock market environment, as was the overall
prevalence (i.e., base rate) of stock price increases in
the market.

Each study began with a training session in which
participants received outcome feedback after making
binary predictions for a series of companies. For each
company, the cue values were presented as colored bars
in a chart and participants were asked to predict
whether the company�s stock price would increase or de-
crease in the next financial quarter. After entering a pre-
diction, participants were informed whether the
company�s stock price had actually increased or de-
creased. Following the training session, participants
completed the probability judgment task that is the fo-
cus of our analyses. Participants judged a new series of
companies, again accompanied by sales and cost cue
values, and were asked to assess the probability that
the company�s stock price would increase the following
quarter. Responses were made on a 0–100% sliding
probability scale, separated into intervals of 5%. Partic-
ipants were paid based on the accuracy of their judg-
ments using an incentive-compatible payoff scheme
based on the Brier score of their judgments; as a proper
scoring rule, the Brier score encourages honest reporting
of subjective probabilities. A lottery was used to distrib-
ute bonus prizes to a random subset of participants; bo-
nuses ranged up to $60.

In both the training and judgment sessions, the diag-
nostic value of the cues and the overall base rate of
increasing stock prices were experimentally manipu-
lated. In Studies 1, 2, and 5, these independent variables
were varied between subjects, with outcome feedback in
the judgment trials omitted in Study 1 and provided in
Studies 2 and 5. In Studies 3 and 4, either cue diagnos-
ticity or base rate was varied within subjects; in Study 3,
the within-subject factor was blocked whereas in Study 4
it varied from trial to trial.

Cue diagnosticity was varied as follows. Each cue va-
lue (domestic sales and costs, and foreign sales and
costs), conditioned on whether it was associated with a
stock price increase or decrease, was represented as a
normally distributed variable with unit variance. The
sales cue distributions for companies with increasing
stock prices had a greater mean than those for compa-
nies with decreasing stock prices, and vice versa for
the costs cue distributions. The degree of separation be-
tween cue distributions for companies with increasing
and decreasing stock prices determines the diagnostic
value of each cue. For both sales and costs, the diagnos-
tic value of domestic indicator cues was set to be higher
than that of foreign indicator cues. Details of the diag-
nostic value of the cues are presented in the method sec-
tions of the individual studies.

The base rate of stock price increases (i.e., overall
‘‘bullishness’’ or ‘‘bearishness’’ of the market) was also
varied in Studies 1–4. In the low BR condition, 40% of
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companies had stock price increases, whereas in the high
BR condition, 70% of companies had stock price in-
creases. In Study 5 only diagnosticity was manipulated,
and BR was held constant at 50%.

The set of companies associated with a particular
condition was constructed by first setting the proportion
of companies with increasing stock prices according to
the desired base rate, and then sampling cue values for
each company from the appropriate distribution
(depending on diagnosticity condition and whether the
stock price was to increase or decrease the next quarter).
One subset of trials constructed in this manner was used
in the training session, and a separate subset was used in
the judgment trials. Cue values were the same for sub-
jects within each condition (but of course differed across
conditions).

Note that participants were exposed to unbiased ran-
dom samples from the relevant population in both train-
ing and judgment trials. Because participants were able
to directly experience the base rate of company success
and the diagnostic value of the cues, through exposure
to representative samples of items, this design avoids
the common objections to ‘‘scenario studies’’ of proba-
bility judgment (e.g., that items are selected in a non-
representative manner, or that conversational norms
or ambiguous language may lead participants to misin-
terpret, ignore, or simply disbelieve the stated base rate).
Studies 1 and 2

Because of their similar designs (and similar results),
we report the results of the first two studies together.

Method

Participants

Participants were 176 business students at the Univer-
sity of British Columbia and the University of Florida.
Three participants were dropped from the analysis be-
cause they did not use the cues appropriately, as indi-
cated by outlying negative (n = 2) or near-zero
(r < .15, n = 1) correlations between judged probability
and outcome in the judgment trials.

Design and procedure
Both base rate (BR) and diagnosticity (D) were var-

ied between subjects, yielding four experimental groups
based on the procedure described in Overview of Stock
Market Studies. In both studies, the distribution of par-
ticipants across the four conditions was approximately
equal: In Study 1 (no feedback during judgment trials),
the sample sizes ranged from 18 to 22; in Study 2 (feed-
back during judgment trials) the sample sizes ranged
from 21 to 26. Each participant completed 60 training
trials, followed by 40 judgment trials in which they as-
sessed the probability that a designated company�s stock
price would increase in the next financial quarter,
p (increase).

The proportion of trials with increasing stocks was
40% in the low BR condition and 70% in the high BR
condition. Level of diagnosticity was manipulated be-
tween subjects as follows. In the low diagnosticity (low
D) condition, the separation between increasing stock
and decreasing stock cue distributions was 0.8 standard
deviations (SDs) for domestic indicator cues and 0.4
SDs for foreign indicator cues. In the high diagnosticity
(high D) condition, the separation was larger: 1.2 SDs
for domestic indicator cues and 0.8 SDs for foreign indi-
cator cues. If a simple ‘‘company performance’’ measure
is generated from the four cues by adding total sales and
subtracting total costs, the resulting value correlates 0.50
with the dichotomous outcome variable in the low D
conditions and 0.68 in the high D conditions.

Results

Calibration of probability judgments
The left-hand panel of Fig. 3 displays the group cal-

ibration curves for each experimental condition. In all
studies, probability judgments were grouped into 7
intervals (0–10%, 15–25%, 30–40%, 45–55%, 60–70%,
75–85%, and 90–100%) to produce smoother calibration
curves. Data from Studies 1 and 2 have been combined
in this figure to save space, and the same general pattern
of results holds in both studies; in comparisons of the
average values of r and b across comparable conditions
in the studies, there were no significant differences
(Fs < 2.5; also see Table 2). The primary result is that
the shape of the calibration curves is visibly influenced
by both the base rate and diagnosticity manipulations.
The base rate manipulation influenced the elevation

of the calibration curves; for both levels of diagnosticity,
the high BR calibration curves are located above the low
BR calibration curves. Companies assigned the exact
same judged p (increase) probability were more likely
to be associated with an actual increase in stock price
in the high BR than in the low BR condition. The diag-
nosticity manipulation, in contrast, influenced the slope

of the calibration curves; the high D calibration curves
are steeper than the low D calibration curves. Changes
in judged p(increase) probabilities are associated with
larger actual changes in the likelihood of a stock price
increase in the high D than in the low D conditions.

RST model fit to data

TheRSTmodelwas fit to eachparticipant�s data, yield-
ing individual estimates of r, a, andb for each participant.
The individual-level parameters were estimated using a
method of moments approach. The means and variances
of each participant�s two conditional log-odds distribu-
tions were computed, and the values of the parameters



Table 2
Mean individual RST parameter estimates (and Standard Errors) for
Studies 1 and 2, by diagnosticity and base rate conditions

Low BR (40%) High BR (70%)

Study 1 (no judgment feedback)

Low D
r 1.31 (.07) 1.10 (.05)
a = r* 0.73 (.05) 0.63 (.04)
b �0.31 (.15) �0.05 (.14)
b* �0.46 (.04) 1.50 (.14)

High D
r 1.11 (.05) 1.12 (.04)
a = r* 1.30 (.05) 1.31 (.09)
b �0.11 (.12) �0.04 (.13)
b* �0.24 (.01) 0.76 (.10)

Study 2 (w/judgment feedback)

Low D
r 1.30 (.07) 1.30 (.05)
a = r* 0.63 (.04) 0.76 (.04)
b �0.23 (.08) 0.04 (.10)
b* �0.55 (.05) 1.19 (.06)

High D
r 1.17 (.06) 1.11 (.03)
a = r* 1.18 (.06) 1.51 (.08)
b �0.35 (.12) �0.16 (.14)
b* �0.28 (.02) 0.60 (.03)

Note. BR, base rate; D, diagnosticity.

Fig. 3. Observed calibration curves (A) and curves predicted by case-based RST (B) for each combination of outcome base rate (BR) and evidence
diagnosticity (D) in Studies 1 and 2. Note. Low BR = low base rate (40%); High BR = high base rate (70%); Low D = low diagnosticity (a = 0.62);
and High D = high diagnosticity (a = 1.17). (B) RST parameter values and r are held constant across conditions, b = �0.21, r = 1.47.
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were chosen so that the predicted means matched the ac-
tual means (determining a and b), and the predicted
pooled variance of the two conditional distributions
matched the actual pooled variance (determining r).

Table 2 lists the mean estimated parameter values in
each condition, as well as the mean parameter values
necessary for perfect calibration (r* and b*). The most
pronounced effect of the experimental manipulations is
the influence of diagnosticity on a, which reflects the im-
proved evidence quality in the high D conditions, and
the extent to which participants were consequently able
to use the cues to better discriminate stock price in-
creases from decreases.

Recall that for perfect calibration, r needs to exactly
track a (i.e., r* = a), and b must be responsive to the
base rate (matching b*). In Study 1, however, consistent
with the view that judgment is primarily case-based and
hence insensitive to these aggregate properties of the
task environment, r and b were only minimally sensitive
to the manipulations of D and BR. The difference in ob-
served b across the base rate manipulation is much smal-
ler (�.20 vs. �.04) than the difference in b* required to
maintain good calibration (�.34 vs. 1.1; interaction is
significant, F (1,75) = 95.4, p < .0001). In fact, the small
effect of the base-rate manipulation on b failed to achieve
statistical significance, F (1,75) = 1.48, p > .20. The dif-
ference in observed r across the diagnosticity manipula-
tion is in the wrong direction and trivially small (1.2 vs.
1.1, F (1,75) = 2.69, p > .10.) compared to the difference
in r* required to maintain good calibration (.68 vs. 1.3;
interaction is significant F (1,75) = 54.2, p < .0001).

The results of Study 2 (see bottom of Table 2) indi-
cate that the relative insensitivity of b and r remains
even when feedback is presented following every proba-
bility judgment, indicating that additional outcome
feedback by itself does not automatically improve cali-
bration performance (see also, e.g., Baranski & Petrusic,
1994). The overall pattern of results in Study 2 is very
similar to that of Study 1; the presence or absence of
feedback did not interact with either the base rate or
diagnosticity manipulations in influencing b or r. How-
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ever, several effects that did not achieve statistical signif-
icance in Study 1 did so in Study 2, possibly due to the
larger sample sizes. The base-rate manipulation had a
significant effect on b (�0.29 vs. �0.06), F (1,90) =
4.46, p = .038, although again the change in b was sig-
nificantly smaller than the required difference in b*

(�0.42 vs. 0.90; interaction F (1,90) = 84.8, p < .0001)
required for Bayesian judgment. Interestingly, the effect
of the diagnosticity manipulation on r was opposite to
that required to maintain calibration (1.30 for low D
and 1.14 for high D), F (1,90) = 8.58, p < .01. One
possible interpretation is that the greater difficulty of
the low D task led to greater noise or volatility in judges�
responses. According to this interpretation, participants
essentially chose to ‘‘play their hunches’’ more often,
given the unpredictability of the domain.

The right-hand panel in Fig. 3 shows the calibration
curves predicted by case-based RST and illustrates the
sizeable miscalibration attributable to the failure of b
and r to match b* and r*. Case-based RST with constant
b and r across conditions closely reproduces the general
qualitative patterns ofmiscalibration observed in the four
conditions. These predictions of the RST model require
estimating a very small number of parameters; the param-
eters b and r are estimated and held constant across all
four conditions, and the discriminability parameter a is
estimated within each level of diagnosticity.

Table 3 provides information on the quantitative fit
of the RST model. The RST model was fit to each con-
dition individually (‘‘Free-Parameter RST’’), and also fit
to all the conditions subject to the constraints implied by
case-based judgment, with fixed b and r across all con-
ditions (‘‘Case-Based RST’’). In each case, we measure
the average absolute deviation between the actual cali-
bration curves and the RST-predicted calibration
curves, weighted by the actual response frequencies so
that more reliable data points appropriately receive
more weight. Also provided for comparison are the fit
measures for each condition based on the optimal
RST parameters, indicating ideal (Bayesian) calibration.

Table 3 indicates that RST provides a close absolute
fit to the data, with overall average deviations of 3.8 per-
centage points, substantially superior to the predictions
of ideal calibration (average absolute deviations of 11.8
percentage points). Second, note that there is only a very
Table 3
Fit measures for RST models for Studies 1 and 2, by condition

Condition Free-parameter RST

Low D, Low BR 2.15
High D, Low BR 3.84
Low D, High BR 5.38
High D, High BR 3.84

Note. Low BR, low base rate (40%); High BR, high base rate (70%); Low D,
measure is average absolute Deviation, in percentage points, between predic
small improvement from fitting RST with ‘‘free’’ param-
eters (average deviation of 3.8) compared to the more
restrictive case where the b and r parameters are fixed
(average deviation of 4.5). This pattern again supports
the predictions of case-based judgment—that judgments
are based primarily on the impression conveyed by the
information seen as relevant to the specific case, with lit-
tle incorporation of the relevant class-based information,
such as overall evidence diagnosticity and base rate.

Discussion

Overall, case-based RST reproduced the observed
patterns of calibration quite closely. Furthermore, the
estimated individual-level parameter values across
experimental conditions were quite consistent with a
case-based model of probability judgment, in which
aggregate class-based considerations receive little or no
weight. Feedback following probability judgments did
not change the qualitative pattern of results.

The observed patterns of calibration across the exper-
imental conditions of Studies 1 and 2 suggest that people
are neither consistently overconfident, nor consistently
underconfident, nor consistently well-calibrated (see
Fig. 3). Overestimation was found in the presence of a
low outcome base rate, but underestimation was found
in the presence of a high outcome base rate. Overex-
tremity was pronounced in the presence of low evidence
diagnosticity but not in the presence of high diagnostic-
ity, where calibration was quite good. In contrast to the
substantial variability in patterns of calibration across
experimental conditions, there is relative stability in
the RST parameters; to a first approximation, the values
of the b and r parameters remain essentially constant
across substantial changes in outcome base rate and evi-
dence diagnosticity. This is precisely the pattern ex-
pected if judgment is primarily case-based (see Table 1).
Studies 3 and 4

In Studies 1 and 2, case-based information (i.e., the cue
values) changed from trial to trial, whereas the class-
based factors were manipulated between-subjects. An
alternative interpretation of the earlier results, then, is
Case-based RST Perfect calibration

3.27 14.55
4.18 6.78
5.76 15.27
4.87 10.76

low diagnosticity (a = 0.62); High D, high diagnosticity (a = 1.17). Fit
ted and actual calibration curves, weighted by response proportions.
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that people�s judgments may not be inherently case-based
and hence insensitive to class-based factors, but rather
that judgments tend to be insensitive to any unchanging
task factor. In Studies 3 and 4, this possibility is tested
by varying outcome base rate or evidence diagnosticity
within the task presented to each participant.

Method

Participants

Participants were 165 undergraduate and MBA stu-
dents at the University of British Columbia and the
University of Florida. Randomly selected participants
were paid based on the accuracy of their judgments,
again based on the Brier score. Two participants� data
were excluded from analysis because their responses
were constant, and data for three more were excluded
because their judgments correlated negatively with the
outcome.

Design and procedure

In Study 3, participants completed a two-block exper-
iment in which either D or BR varied between blocks.
Each block, involving different types of companies, con-
sisted of a training session followed by a set of judgment
trials. Outcome feedback was provided after each of the
50 trials in the training session. This session was fol-
lowed by 30 p(increase) judgment trials, without feed-
back. This process (training and prediction) was then
repeated for a second set of companies of a different
type, to signal to participants that the task conditions
(specifically outcome base rate and cue diagnosticity)
could differ from that of the first block.
Fig. 4. Observed calibration curves (A) and curves predicted by case-based R
diagnosticity (D) in Studies 3 and 4. Note. Low BR = low base rate (40%); H
and High D = high diagnosticity (a = 1.09). (B) RST parameter values b an
The high BR, low D condition of Studies 1 and 2
served as a baseline condition encountered by all partic-
ipants, and was labeled as a set of technology compa-
nies. For one group of participants (n = 57), the
second condition (finance companies) was associated
with higher cue diagnosticity, corresponding to the high
BR, high D condition of Studies 1 and 2. For another
group (n = 58), the second condition (retail companies)
was associated with a lower base rate of stock price in-
creases, corresponding to the low BR, low D condition
of Studies 1 and 2.

In Study 4, the company type varied from trial to trial.
That is, the two blocks of 50 training trials from Study 3
were mixed in a single 100-trial training session in Study
4. Similarly, the two blocks of 30 judgment trials from
Study 3 were mixed in a single 60-trial judgment session
in Study 4. One group of participants (n = 20) in Study 4
was presented with a mix of technology companies (high
BR, low D) and finance companies (high BR, high D);
another group (n = 25) was presented with a mix of tech-
nology companies (high BR, low D) and retail compa-
nies (low BR, low D). If noticeable trial by trial
variation in outcome base rate or evidence diagnosticity
is required for its use in judgment, then the design of
Study 4 should reduce or eliminate the tendency to
neglect class-based evidence. In all other respects, Studies
3 and 4 were identical in method and procedure.

Results

Calibration of probability judgments

The left-hand panel of Fig. 4 displays the group cal-
ibration curves for each condition of Studies 3 and 4.
ST (B) for each combination of outcome base rate (BR) and evidence
igh BR = high base rate (70%); Low D = low diagnosticity (a = 0.68);
d r are held constant across conditions, b = 0.05, r = 1.33.
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Data from the two studies have been collapsed into a
single set of calibration curves; the general pattern is
the same if the results of each study are plotted sepa-
rately (comparisons of the average values of r and b
across studies yielded no significant differences,
Fs < 3.0; see Table 4 also). As in Studies 1 and 2, the
shape of the calibration curves in Fig. 4 is visibly influ-
enced by both the base rate and diagnosticity manipula-
tions. The base rate manipulation is again seen to
influence the elevation of the calibration curves and
the diagnosticity manipulation is seen to influence the
slope.

RST model fit to data
The RST model was fit individually to each partici-

pant�s data, using the method of moments procedure de-
scribed earlier. Table 4 lists the mean estimated
parameter values (r, a, and b) in each condition of Stud-
ies 3 and 4, along with the mean parameter values nec-
essary for perfect calibration (r* and b*). Once again,
consistent with the view that judgment is primarily
case-based, r and b were insufficiently sensitive to
manipulations of D and BR, even when these class-
based factors were manipulated within-subjects rather
than between-subjects.

In Study 3, when base rate varied across blocks, the
value of b was significantly higher in the high BR
(b = 0.37) than in the low BR (b = �0.11) condition,
t (55) = 5.0, p < .001. The observed values of b, however,
are not nearly as large as those required to maintain
good calibration, where b* = 1.65 for high BR and
Table 4
Mean individual RST parameter estimate (and standard errors) for
Studies 3 and 4, by diagnosticity and base rate conditions

Study 3 (blocked) Low BR (w/Low D) High BR (w/Low D)
r 1.11 (.04) 1.09 (.05)
a = r* 0.82 (.04) 0.64 (.04)
b �0.11 (.10) 0.37 (.09)
b* �0.56 (.12) 1.65 (.16)

Study 3 (blocked) Low D (w/High BR) High D (w/High BR)

r 1.05 (.05) 1.01 (.04)
a = r* 0.81 (.04) 1.23 (.05)
b 0.21 (.11) 0.48 (.11)
b* 1.17 (.12) 0.71 (.04)

Study 4 (mixed) Low BR (w/Low D) High BR (w/Low D)

r 1.15 (.06) 1.18 (.05)
a = r* 0.72 (.05) 0.90 (.06)
b 0.17 (.09) 0.14 (.10)
b* �1.29 (.13) 1.07 (.17)

Study 4 (mixed) Low D (w/High BR) High D (w/High BR)

r 1.09 (.06) 0.95 (.06)
a = r* 0.91 (.07) 1.38 (.10)
b 0.07 (.08) 0.32 (.12)
b* 0.99 (.12) 0.78 (.12)

Note. BR, base rate; D, diagnosticity.
b* = �0.56 for low BR; the change in observed b is less
than a quarter of that necessary to maintain good cali-
bration, t (55) = 8.6, p < .0001. When diagnosticity var-
ied across blocks, the observed value of r did not
change significantly, t (52) = 1.17, p = .25, and was too
low relative to r* in the high D condition (t (52) = 3.3,
p < .01) and too high in the low D condition
(t (52) = 4.9, p < .0001). An unanticipated finding is that
b is substantially higher in the high D condition than in
the low D condition, t (52) = 2.90, p < .01. Based on the
formula for b*, it can be seen that the absolute value of b
should actually decrease to maintain good calibration
given an increase in a.

In Study 4, when base rate varied from trial to trial,
the value of b did not differ significantly between the
high BR (b = 0.17) and low BR conditions (b = 0.14),
t (27) = 0.29, despite the pronounced difference in b* be-
tween the low (b* = �1.29) and high BR (b* = 1.07); the
difference b � b* changes significantly across conditions,
t (27)=9.4, p < .0001. When diagnosticity varied from
trial to trial, the observed value of r changed signifi-
cantly from low D (r = 1.09) to high D (r = 0.95) con-
dition, but in the opposite direction of that required to
maintain good calibration, t (19) = 3.49, p = .002.

The right-hand panel in Fig. 4 shows the calibration
curves predicted by case-based RST (with b and r con-
strained to constant values across both between and
within-subject manipulations), which again closely
reproduce the general patterns of miscalibration ob-
served across experimental conditions. In terms of quan-
titative fit measures, the ‘‘free parameter’’ RST
predictions were off by an average of 2.9 absolute per-
centage points; the predictions of case-based RST
(where b and r were held constant across conditions)
were only slightly worse, off by an average of 3.7 per-
centage points. Both the constrained and unconstrained
RST predictions were much better than the predictions
of a perfectly calibrated Bayesian model, which had
average absolute deviation of 9.7 percentage points. As
in Studies 1 and 2, the case-based RST model captures
the patterns in the data quite well; there is only very
small improvement when the RST b and r parameters
are allowed to vary across different judgment conditions.
Study 5

The results of Studies 1–4 confirmed many of the pre-
dictions of case-based judgment, but one of the calibra-
tion patterns discussed earlier and illustrated in Fig. 1
has not been observed: underextremity. Case-based
judgment predicts that underextremity will be found
when diagnosticity is very high, and judges fail to adjust
their probability judgments to incorporate this very high
diagnosticity. Consequently, in Study 5, we manipulate
diagnosticity over a wider range in order to test the



Table 5
Mean individual RST parameter estimates (and standard errors) for
Study 5, by diagnosticity condition (base rate constant at 50%)

Low D Med D High D

r 1.00 (.05) 0.94 (.05) 0.82 (.05)
a = r* 0.84 (.06) 1.31 (.08) 2.29 (.17)
b �0.61 (.11) �0.72 (.20) �0.55 (.13)

Note. D, diagnosticity.
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prediction of underextremity implied by case-based
judgment.

Method

Participants
Participants were 161 undergraduate and MBA stu-

dents at the University of British Columbia and the Uni-
versity of Florida. Eleven participants were dropped
from the analysis because they did not use the cues
appropriately, as evidenced by outlying negative
(n = 7) or near-zero (r < .15, n = 4) correlations between
judged probability and outcome.

Design and procedure

The overall structure of the experiment was similar
to Study 2, with outcome feedback provided on all tri-
als. There were three conditions, each with base rate of
50%, but differing in terms of cue diagnosticity. As in
the earlier studies, in the low diagnosticity (low D) con-
dition, the separation between increasing stock and
decreasing stock cue distributions was 0.8 standard
deviations (SDs) for domestic cues and 0.4 SDs for for-
eign cues. In the medium diagnosticity (medium D)
condition, the separation was 1.2 SDs for domestic
cues and 0.8 SDs for foreign cues (equivalent to the le-
vel of diagnosticity of the high D conditions in the pre-
vious studies). In the new high diagnosticity (high D)
condition, the separation was 1.6 SDs for domestic
cues and 1.2 SDs for foreign cues. If a simple perfor-
mance measure is computed by adding total sales and
subtracting total costs, the resulting value correlates
0.50, 0.68, and 0.82 with the dichotomous outcome
variable, in the low D, medium D, and high D condi-
tions, respectively.
Fig. 5. Observed calibration curves (A) and curves predicted by case-based
D = low diagnosticity (a = 0.8); Med D = medium diagnosticity (a = 1.0); a
and r are held constant across conditions, b = �0.5, r = 1.2.
Results

Calibration of probability judgments

The left-hand panel of Fig. 5 displays the group cal-
ibration curves for each level of diagnosticity. As before,
the slope of the calibration curves is visibly influenced by
the diagnosticity manipulation. Most importantly, note
that the calibration curve shows overall underextremity
in the high D condition. For each point along the high D
calibration curve, subjective probabilities are less ex-
treme than the corresponding objective probabilities.

RST model fit to data

The RST model was fit to each participant�s data
using the method of moments approach; Table 5 lists
the mean estimated parameter values in each condition.
Because the base-rate was 50% in all conditions, the
optimal value of b* is always 0.

The parameter r ought to follow the parameter a for
good calibration. However, the data show a roughly con-
stant value of r despite the changing level of a. In fact, r
decreases slightly as a increases, F (2,147) = 3.41,
p < .05. The difference between r and a changes signifi-
cantly across conditions, F (2,147) = 36.3, p < .001,
reflecting the failure to account for changes in diagnos-
RST (B) for each diagnosticity (D) condition in Study 5. Note. Low
nd High D = high diagnosticity (a = 1.7). (B) RST parameter values b



Fig. 6. Physicians. Calibration of physicians� judgments, varying by
base rate and diagnosticity across studies. Circles represent very low
BR and low D tasks, open squares represent low BR and high D tasks,
and triangles represent high BR and high D tasks. Predictions of case-
based RST model are displayed by dashed lines. See Koehler et al.
(2002) for details. Note. Case-based RST predictions assume no focal
bias (b = 0) and fixed judgmental extremity (r = 1). Discriminability
(D) and base rate (BR) are approximately matched to the empirical
datasets as follows: For low D, a = 0.7; for high D, a = 1.0; very low
BR = 5%; low BR = 30%; and high BR = 80%.
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ticity. Consistent with the prediction of underextremity,
r is substantially too low for the high diagnosticity con-
dition, t (147) = 10.6, p < .001.

The right-hand panel in Fig. 6 shows the calibration
curves predicted by case-based RST and illustrates the
sizeable miscalibration attributable to the failure of r
to follow a. In terms of the quantitative fit of the RST
model, the free parameter RST predictions are off by
an average of 4.1 percentage points, the case-based
RST predictions are only slightly worse (off by 4.5 per-
centage points), and both are substantially better than
the Bayesian predictions, which deviate by an average
of 8.7 percentage points.
General discussion

Business students making probability judgments in a
simulated stock market environment showed systematic
patterns of miscalibration whether or not they received
feedback after judgment trials and whether or not fea-
tures of the environment remained constant or varied
within the experimental session. Random Support The-
ory was able to closely reproduce these patterns, which
are consistent with a case-based model of judgment
developed in the heuristics and biases tradition (e.g.,
Gilovich, Griffin, & Kahneman, 2002; Kahneman, Slo-
vic, & Tversky, 1982).
At first glance, these results and the accompanying
analyses may seem like restatements of the extensively
studied phenomena of ‘‘base-rate neglect’’ and ‘‘illusion
of validity’’ (Kahneman et al., 1982). However, the pres-
ent treatment provides substantial methodological, the-
oretical, and empirical advances over the classic
heuristics and biases demonstrations.

First, it is again worth stressing that our results were
obtained in a judgment environment where participants
were able to learn cue diagnosticity and outcome base
rate values directly from experience, and where judg-
mental accuracy was rewarded in an incentive-compati-
ble manner. The demonstration of a clear, predictable
pattern of biases in (a) an interactive setting with (b)
an involving and easily understandable stock market
task where participants (c) actively learn about environ-
mental contingencies, and (d) have incentives for good
performance helps to refute criticisms that results based
on the scenario experiments used in classic heuristics
and biases research have limited generality (e.g., Gige-
renzer, 1991; Koehler, J., 1996; Schwarz, 1996). In par-
ticular, the observed pattern of results refutes the strong
claim that biases of probability judgment ‘‘. . . are turn-
ing out to be experimental artifacts or misinterpreta-
tions.’’ (Cosmides & Tobby, 1994, p. 327).

More specifically, a number of critics have argued
that the results of scenario experiments in the heuristics
and biases tradition do not accurately represent the
quality of human statistical reasoning because the spe-
cific judgment task is unique and the relevant reference
class is unclear. Some evolutionary psychologists have
dismissed the results of such designs on the following lo-
gic: ‘‘our hunter-gatherer ancestors were awash in statis-
tical information in the form of the encountered
frequencies of real events: in contrast, the probability
of a single event was inherently unobservable to them’’
(Cosmides & Tobby, 1994, p. 330). Thus it is notable
that the pattern of miscalibration implied by case-based
RST holds even when participants� beliefs are based on
directly encountered frequencies, and their judgments
are made repeatedly with salient and consequential
feedback.

Second, the patterns in the observed calibration
curves are inconsistent with models that propose that
poor calibration is primarily a statistical artifact, ascrib-
ing miscalibration merely to the operation of random er-
ror or regression to the mean. Such models imply that
shallow-sloping curves should cross the identity line at
the base rate value (or at .50 if people are unaware of
or unaffected by the base rate). Such models also cannot
account for the underextremity found in Study 5.

Third, the results illustrate the usefulness and parsi-
mony of RST as a quantitative model for predicting
patterns of case-based judgment and as a tool for diag-
nosing observed deviations from perfect calibration.
RST adds quantitative precision to the largely qualitative
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principles that have emerged from the heuristics and
biases tradition, which have sometimes been criticized
for being too vague and imprecise (e.g., Gigerenzer,
1996). Furthermore, it extends the reach of support the-
ory from the analysis of coherence of judgment to the
analysis of correspondence between judgment and
outcome.

Finally, and perhaps most importantly for our overall
assessment of the performance of human probabilistic
judgment, the observed patterns of calibration illustrate
that overconfidence is not by any means a universal fea-
ture of probability judgment, but rather appears to be a
common byproduct of case-based judgment—a byprod-
uct likely to be observed only under some environmental
circumstances. Note, however, that we are not arguing
against the existence of optimistic overconfidence, con-
firmatory biases, or miscalibration resulting from ran-
dom error. Indeed, we suspect that each of these
processes may operate in some environments. These
processes can also be diagnosed or captured by the
parameters of RST (e.g., optimism may manifest itself
as a larger value of b for desirable than for undesirable
events). Most fundamentally, we argue that due to case-
based judgment, evidential features of the environment
will give rise to predictable patterns of (mis)calibration
that cannot be explained easily by most other accounts.

Contrasting RST and similar stochastic models of

calibration

The decision variable partition (DVP)model of Ferrell
and McGoey (1980), supplemented with the assumption
of fixed cutoff values, also can reproduce the different pat-
terns of calibration across different environmental condi-
tions. The primary modeling difference between RST and
DVP is that DVP invokes multiple cutoff parameters
(e.g., 10 cutoff parameters to model 11 response catego-
ries), whereas RST directly maps support into the ob-
served quantitative judgment. In effect, the many DVP
cutoff parameters are represented by the twoRST param-
eters b (capturing the center of the cutoffs) and r (captur-
ing the spread of the cutoffs). As a result, RST has
additional parsimony, but cannot be easily applied to
non-quantitative judgments of likelihood, which DVP
can model straightforwardly. With the additional parsi-
mony of RST comes the useful result that there are un-
ique values of b and r corresponding to good
calibration, whereas in models with multiple cutoffs,
there are typically many sets of cutoffs that correspond
to good calibration (see also Gu & Wallsten, 2001).

Perhaps the most fundamental difference between
RST and DVP (and related signal-detection models with
cutoff parameters), is that RST attaches the interpreta-
tion of support to the underlying random variable that
is modeled. The principle of case-based judgment built
from earlier findings in the heuristics and biases tradi-
tion furthermore implies that these assessments of sup-
port are primarily case-based. Thus, the stability of the
b and r parameters in RST has a core psychological
interpretation in terms of case-based judgment. The sta-
bility of cutoff parameters in DVP, on the other hand,
while equally valuable in terms of accounting for empir-
ical changes in calibration performance, is less readily
connected to a more fundamental principle of intuitive
judgment. Hence, we suggest that the RST framework,
with its linkage to qualitative psychological principles
like case-based judgment, may provide a rich theoretical
structure for representing calibration.

Generalization beyond the laboratory

Our results support the view that probability judg-
ment is primarily case-based, resulting in neglect of
class-based characteristics such as the general predict-
ability of the environment and the overall outcome base
rate. With the assumption that probability judgments
are case-based, the RST model is able to capture large
and systematic changes in calibration curves via constant
values of the model�s b and r parameters (which can be
compared to Bayesian parameter values b* and r*

needed for perfect calibration).
How readily might these results generalize beyond the

laboratory setting? To address this question, Koehler et
al. (2002) collected a number of previously published
datasets consisting of on-the-job probability judgments
made by experts in various domains such as medicine,
meteorology, sports, economic forecasting, business,
and law. Within each domain, the outcome variable of
interest varied from dataset to dataset in terms of base
rate and predictability. Consistent with our experimen-
tal findings, the elevation of the expert calibration
curves varied systematically with outcome base rate,
and the slope varied systematically with the diagnostic-
ity of the available evidence. As an example, Fig. 6 dis-
plays the calibration of physicians� predictions across
tasks differing in predictability and base rate, along with
the case-based RST predictions of their performance.
These patterns of miscalibration were quite closely
reproduced by RST on the assumption that the extrem-
ity (r) parameter remains constant across varying levels
of evidence diagnosticity, and the b parameter remains
constant across varying levels of outcome base rate
(and diagnosticity as well).

Previous characterizations of subjective probability
calibration, whether as consistently overconfident,
underconfident, or well-calibrated, offer overly static
portraits that fail to capture the predictable manner in
which patterns of calibration change with properties of
the judgment environment. Such characterizations could
be modeled using RST on the assumption that its
parameter values change across judgment environments
in a manner that yields a fixed calibration pattern.
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That is, fixed calibration patterns can arise from varying
model parameters. A case-based judgment account, in
contrast, can be modeled using RST on the assumption
that the model parameters are largely insensitive to
aggregate characteristics of different judgment environ-
ments. That is, fixed model parameters can yield varying
patterns of calibration (illustrated in Figs. 1 and 6). Our
data suggest that judgments both in the laboratory and
in the field exhibit diverse patterns of calibration that
are nevertheless largely predictable from the common
fundamental principle of case-based judgment.
Appendix A. Determining Bayesian RST parameters

Recall the distributions of the logodds-transformed
judged probabilities, conditional on each outcome, as
described in Eqs. (4a) and (4b)

ln
sðAaÞ
sðBaÞ

� �
is normally distributed with mean

ðb þ aÞr and variance 2r2: ð4aÞ

ln
sðAbÞ
sðBbÞ

� �
is normally distributed with mean

ðb� aÞr and variance 2r2: ð4bÞ
In this Appendix, we derive the values of b = b* and

r = r* that will produce perfectly calibrated Bayesian
judgments. Algebraically, these optimal values can be
determined by matching the judged probability to the
objective Bayesian probability of the outcome derived
from the support distributions in ((4a) and (4b)). Con-
sider an arbitrary judged probability P ðA;BÞ ¼ 1

1þexpð�jÞ
so that the judged log-odds are expressible as

j ¼ ln PðA;BÞ
1�PðA;BÞ

� �
: We use Bayes�s rule to determine the

actual log-odds of hypothesis A being correct condi-
tional on the judged log-odds j. As before, let the sub-
script a denote the event that hypothesis A is correct
and the subscript b denote the event that hypothesis B
is correct. Further, let fa(Æ) and fb(Æ) denote the density
functions of the normal distributions of log-support
specified in ((4a) and (4b)).

Bayes�s rule in odds form implies:

PrðajjÞ
PrðbjjÞ ¼

BR

1� BR

� �
� faðjÞ

fbðjÞ

� �
: ð6Þ

Taking logs of both sides yields:

ln
PrðajjÞ
PrðbjjÞ

� �
¼ ln

BR

1� BR

� �
þ ln

faðjÞ
fbðjÞ

� �
: ð7Þ

Now, we plug in the specific normal distribution den-
sity functions fa(Æ) and fb(Æ), based on the means and
standard deviations specified above. Note that the rele-
vant standard deviation for the log-odds expression used
is

ffiffiffi
2

p
r.
faðjÞ ¼
1

2r
ffiffiffi
p

p exp � 1

2

j� br� arffiffiffi
2

p
r

� �2
 !

; ð8Þ

fbðjÞ ¼
1

2r
ffiffiffi
p

p exp � 1

2

j� brþ arffiffiffi
2

p
r

� �2
 !

: ð9Þ

Substituting in the density functions:

ln
PrðajjÞ
PrðbjjÞ

� �
¼ ln

BR

1� BR

� �
þ 1

2

j� brþ arffiffiffi
2

p
r

� �2

� 1

2

j� br� arffiffiffi
2

p
r

� �2

: ð10Þ

Simplifying:

ln
PrðajjÞ
PrðbjjÞ

� �
¼ ln

BR

1� BR

� �
þ 1

4

j
r
� bþ a

� �2

� 1

4

j
r
� b� a

� �2

: ð11Þ

After expanding the two squared right-hand expres-
sions and canceling duplicate terms:

ln
PrðajjÞ
PrðbjjÞ

� �
¼ ln

BR

1� BR

� �
þ j

r
� b

� �
a: ð12Þ

We can then express the Bayesian log-odds, as a lin-
ear function of the judged log-odds j

ln
PrðajjÞ
PrðbjjÞ

� �
¼ ln

BR

1� BR

� �
� ab

� 	
þ a

r

� �
j: ð13Þ

For optimal calibration, this Bayesian log-odds
expression needs to be equal to the judged log-odds j.
We define b* and r* as the parameter values for which
this equality holds:

j ¼ ln
BR

1� BR

� �
� ab�

� 	
þ a

r�

� �
j: ð14Þ

For this equality to hold for all j, the bracketed inter-
cept term must be zero,

ln
BR

1� BR

� �
� ab�

� 	
¼ 0; and therefore

b� ¼ 1

a
ln

BR

1� BR

� �
: ð15Þ

Also, the slope term (the ratio a/r*) must be 1, and
therefore r* = a.

Thus, for perfect calibration the optimal extremity
parameter r* must precisely follow (indeed, exactly
equal) the discriminability parameter a, and the optimal
bias parameter b* must follow the outcome base rate
(transformed to log-odds and scaled by a as well).

The constraint r* = a entails what may seem to be a
surprising linkage between the degree of overlap be-
tween the means of the log-support distributions (a)
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and the variability of those distributions (r). The intui-
tion for this constraint is that, as the separation between
the two log-odds distributions a increases (or, equiva-
lently, as the overlap between the two distributions gets
smaller), the Bayesian probability Pr (a|j) becomes more
extreme. To achieve good calibration then, one�s judg-
ment needs to get appropriately extreme as well; more
extreme judgments entail a correspondingly larger value
of r. Consequently, Bayesian judgment in the RST
framework requires that r follow a. What is rather sur-
prising, and results from the use of the log-normal distri-
bution to represent support, is that r must move in
absolute lockstep with a.
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