Psychological Review
2000, Vol. 107, No. 4, 943-946

the American Psychological Association, Inc.

Copyaigm 2000 b
3 5.00 DO 10.1037//0033-295X.107.4.943

3-295

THEORETICAL NOTES

Should Observed Overconfidence Be Dismissed as a Statistical Artifact?
Critique of Erev, Wallsten, and Budescu (1994)

Lyle Brenner
University of Florida

1L Erev, T. S. Wallsten, and D. V. Budescu (1994) showed that the same probability judgment data can
reveal both apparent overconfidence and underconfidence, depending on how the data are analyzed. To
explain this seeming paradox, 1. Erev et al. proposed a general model of judgment in: which overt
responses are related to underlying “true judgments” that are perturbed by error. A central conclusion of -

their work is that observed over- and underconfidence can be split into two components: (a)

e” over-

and underconfidence and (b) “artifactual” over- and underconfidence due to error in judgment. It is
argued in the present article that decomposing over- and underconfidence into true and artifactual
components is inappropriate. The mistake stems from giving primacy to ambiguously defined model
constructions (true judgments) over observed data.

A central and extensively researched question in the study of
judgment under uncertainty concerns the correspondence between
subjective and objective probabilities. In an influential article,
Erev, Walisten, and Budescu (1994) raised several cautions re-
garding common analyses of subjective probability data. Erev et
al. illustrated cases in which the same data can appear to reveal
both overconfidence and underconfidence, depending on the
method of data analysis. Across a wide range of conditions, Erev
et al. demonstrated that when objective probability (OP) is pre-
dicted from subjective probability (SP), one may observe overcon-
fidence, but when SP is predicted from OP, one may observe
underconfidence. To be precise, the former demonstration of over-
confidence consists of the observation that for a given level of SP,
average OP is less extreme (i.e., closer to 50%) than SP. The latter
demonstration of underconfidence consists of the observation that,
for a given level of OP, average SP is less extreme than OP.

Erev et al. (1994) attributed these seemingly paradoxical results
to random error in judgment and response processes. They pro-
posed a general model of judgment in which overt statements of
subjective probability are related to underlying “true judgments”
perturbed by error. In this model, when assessing the likelihood of
an uncertain event, a judge experiences a covert degree of confi-
dence (x), modeled as a function of two arguments: a true judg-
ment (f) and a random error component (e):

x=f(1, e).
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This covert degree of confidence is translated into an overt re-
sponse (y) by some monotonic function g:

y = g(x).

i
Erev et al. (1994) described in detail a special case of this
general model, in which covert confidence is composed of the

log-odds corresponding to the true judgment plus a normally
distributed error term:

t
x=ln(1 — t) + e
The transformation g converts from log-odds back to probabilities:
, - ’ .
YT T ¥ exp(—2)

For this particular model, Erev et al. (1994) showed that even if
the true judgments ¢ are perfectly calibrated, the overt responses y
may not be. Consequently, they concluded that patterns of over- or
underconfidence in the responses may, in part, reflect statistical
artifacts driven by the error term e. In a more recent article,
Budescu, Erev, and Wallsten (1997) have argued that this conclu-
sion . of (partially) artifactual mischlibration also follows from .
several other specific cases of the general model described earlier.
In several additional articles (e.g., Budescu, Wallsten, & Au, 1997;
Wallsten, Budescu, Erev, & Diederich, 1997), the authors have
extended the model, while maintaining the basic framework of true
judgments perturbed by error. Other authors have made similar
arguments regarding the potential artifacts of “error” in judgments
of probability (e.g., Juslin, Olsson, & Bjérkman, 1997; Pfeifer,
1994; Soll, 1996).

Consistent with the notion that observed over- or underconfi-
dence may be partially artifactual, Erev et al. (1994) argued that
calibration should ideally be evaluated based on the true judgments
(1), after removing the influence of error: “The relation between SP
and OP in a particular context needs to be established after con-



944 : THEORETICAL NOTES

trolling for random factors in judgment or response” (p. 523).
Thus, Erev’ et al. argued for a stricter empirical standard for
documenting deviations from good calibration. In another article,
Budescu, Erev, and Wallsten (1997) stated that “to establish the
existence of true over- and underconfidence, one must first be able
to discount the possibility that the observed patterns are artifactual
and due to the effects of random error” (p. 167). Erev et al. were
careful not to claim that the common finding of overconfidence is
artifactual, but rather that in same cases it may be partially arti-
factual. Indeed, both Erev et al. and others (e.g., Brenner, Koehler,
Liberman, & Tversky, 1996; Keren, 1997) have argued that, even
if the purported artifacts of random error are removed, overconfi-
dence can still be reliably documented.

My goal in this article is to examine the logic-and foundations
of Erev et al.’s (1994) model of true judgments perturbed by error.
1 argue that, although their model may do an excellent job of
accounting for subjective probability data, it is inappropriate to
separate observed over- and underconfidence into true and artifac-
tual components based on such a model. As a result, even the claim
that observed over- and underconfidence may be a statistical
artifact needs to be reconsidered. Although well-intentioned, the
attempt to discriminate between true and artifactual miscalibration
suffers from a basic flaw: the lack of a clear definition of either the
true judgment ¢ or the error term e. Despite the ambiguous defi-
nition of ¢, Erev et al. nonetheless treated the constructed true
judgment as more fundamental than the data to be explained. In
the absence of compelling definitions and interpretations for
the concepts of true judgment and error there is no sound basis
for separating so-called artifactual miscalibration from true
miscalibration. )

Erev et al.’s (1994) model makes a valuable contribution by
reminding researchers that there are many different (and poten-
tially useful) ways to analyze subjective probability data and that
seemingly similar analyses can often yield divergent conclusions.
Furthermore, Erev et al. encouraged modelers to explicitly recog-
nize variability in judgment, a recommendation I Wholeheartedly
endorse. However, Erev et al. overreached by implicitly claiming
to identify the fundamental criterion for evaluating “true”
calibration. '

Example of the Erev, Wallsten,
and Budescu (1994) Model

Let us first consider a simple illustration of how Erev et al.’s
(1994) log-odds model can lead to an interpretation of spurious
ovet- or underconfidence. Assume that a judge’s true judgment (as
defined in Erev et al.’s model) for a particular class of events is
£ =0.90, and that this true judgment is perfectly calibrated (i.e., the
appropriate objective probability for this class of events is
also 0.90). This true judgment corresponds to a log-odds of
In(0.90/0.10) = 2.2. For simplicity, assume that the error term e
consists of either a two-point log-odds increase or a 2-point log-
odds decrease with equal likelihood. The equally likely covert
confidence levels (in log-odds) would thenbe x = 0.2 and x = 4.2,
and the corresponding overt responses would be y = .55 and y =
- .99. Thus, for events with an objective probability of .90, the
average overt subjective probability is only (.55 + 99)2 = 77,
yielding substantial underconfidence in terms of average probabil-
ities, but perfect calibration in terms of average log-odds.

If one concludes that the observed underconfidence in stated
probabilities in this case is merely an artifact, misrepresenting the
true psychological state of confidence, one is implicitly assuming
that log-odds are the appropriate units for evaluating true calibra-
tion. But why use log-odds? No compelling rationale was provided
by Erev et al. (1994) for the log-odds model, beyond the sugges-
tion that covert confidence should be represented on an unbounded
(—, o) rather than bounded [0, 1] scale. Indeed, they noted that
the log-odds transformation is just one of many possible forms of
the general model x = f{t, ¢). But in order to make claims about the
calibration of the true judgments, the researcher specifies the
function f; and by doing so implicitly defines the fundamental units
in which calibration is to be evaluated. Given that the specification
of f (and consequently #) is left to the judgment of the researcher,
it does not seem prudent to evaluate the calibration of primary
interest in terms of the true judgments 1.

There is a natural alternative way to interpret the data in the-
example discussed here without invoking the “true judgment” and
“error” interpretations of Erev et al.’s (1994) model. We observe
that for events with OP = .90, judges respond with overt subjec-
tive probabilities of .99 and .55, sometimes overestimating the
target value slightly and other times underestimating it substan-
tially. On average, then, in conditioning on OP = 0.90, we observe
underconfidence in judged probabilities. If, for whatever reason,
we wished to evaluate the calibration of the judge’s responses
converted to log-odds, they could easily do so and would find that
for an event with log-odds of 2.2, judges respond with overt
subjective probabilities corresponding to log-odds of 4.2 and 0.2.
On average, in conditioning on objective log-odds of 2.2, we
observe perfect calibration of judged log-odds.

Of course, many other analyses are available to the researcher:
Probabilities could be transformed to odds, or to z-scores using the
inversc cumulative normal distribution, or to any other units of
interest. To determine “true” calibration, Erev et al. (1994) needed:
to identify the units that the judge “thinks in” and evaluate cali-
bration in those units. However, this is not a goal that any psy-
chological model can ever achieve because the “true units” of
thought do not exist outside the assumptions embedded in the
model. Suggesting that the judge may be well-calibrated internally,
where the internal confidence measure is some transformation of
the stated probability, presupposes the very issue to be determined.

To illustrate further the arbitrary nature of the true judgments,
note that if one observed well-calibrated responses in terms of
average probabilities, it would be straightforward to construct a:
model in which people are “truly” miscalibrated and the observed
good calibration is merely due to the transformation from psycho-
logical units to response units (and an appropriately chosen error
distribution). Depending on the specific transformation assumed,
one could conclude either true overconfidence or true undercon-
fidence. The central problem lies in declaring the constructed true
judgments to be more fundamental than the judgment data from
which they are derived.

Having said this, I should stress that I do not in any way wish
to discourage model building in the study of probability judgment.
Much of my own work has been directed toward developing and
extending models of probability judgment (e.g., see Brenner &
Koehler, 1999), using the framework of support theory (Rotten-
streich & Tversky, 1997; Tversky & Koehler, 1994). The problem
with Erev et al.’s (1994) conclusion does not reside in the math-
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ematical structure of the model they proposed, but rather in the
(overly) fundamental interpretations they gave to the terms in the
model. Although their model may be extremely useful in account-
ing for probability judgment data, such utility does not justify
claims of identifying true or underlying calibration.

Defining True Scores and Errors

In-addition, I would:suggest that the terminology (true judgment.::

and random error) used in describing the model may contribute to
the problem of treating the model as more fundamental than the
data. Once the mathematical entity ¢ is labeled as a “true judgment’”
and “error” (as represented by e) is introduced into the precess
leading to an overt response (), it:seems natural to evaluate:the
calibration of ¢ rather than y. The language stacks the deck in favor
of the model (which purports to identify the “underlying” process)
over the error-contaminated data.

At an even more basic level, neither ¢ nor e is unambiguously
defined. This problem is illustrated by Erev et al.’s (1994) circular
definition of the true judgment in terms of error: “The subject’s
true judgment of the likelihood of event i, ¢, is the estimate from 0
to 1 the subject would provide if he or she could operate in a fully
repeatable, error-free manner” (p. 524, emphasis added). In addi-
tion to being circular, this definition is puzzling in that it rests on
a condition (that the judge could operate in a “fully repeatable”
manner) that is always assumed to be faise.

Consider an alternative labeling for the mathematical terms in
this model. In most classic psychometric contexts, a true score is
defined as a mean across some population of items. For example,
a test taker’s true score for an aptitude test is the mean of the scores
she or he would receive across a set of equivalent tests (e.g., tests
with questions sampled from some population of items). Error is
interpreted as variability around this mean. In these terms, then, ¢
in Brev et al’s (1994) model can be defined as the average
log-odds across a (hypothetical) population of judgments of the
same event; ¢ can be defined as the difference between the log-
odds of any particular judgment and the population mean ¢ The
key insight from using these definitions is that ¢ represents a
particular population mean (which requires some specification of
the population) defined over a particular empirical operation (in
this case, a judge making a probability judgment that is then
transformed to log-odds). In the absence of auxiliary arguments
about the importance of the particular population and empirical
operation invoked in defining f, strong conclusions about the
fundamental nature of the true judgments are not warranted.

These changes in interpretation are not trivial, nor are they
merely semantic. In many cases the connotations of the terms used
in one’s model may be critically important and may imply quite
different analyses and conclusions. Once the terms true judgment
and error are used for 7 and e, it is a natural next step, to remove
the “nuisance” influence of error and to evaluate the calibration of
t. In contrast, using definitions in which ¢ is interpreted as a
population mean and e as within-subject variability, it becomes
less clear why one should evaluate the calibration of the mean
log-odds. Of course, such an analysis may be of interest, not
because it identifies true or fundamental underlying processes, but
rather because it may reveal structure in the data that was not
apparent from analysis of the raw, untransformed data.

The implications of within-subject variability of judgment are of
substantial theoretical and practical interest; we would be wise to
follow Erev et al.’s (1994) lead and build models that explicitly
incorporate variability of judgment. However, we must be espe--
cially careful that our models, and the terms we use to describe
those models, do not inadvertently distract us from the central goal
of describing and characterizing the systematic regularities in the
data. Once the leading terms true judgment and error are removed,
_the conclusion flowing from Ercv et al.’s model is that a judge can
be well-calibrated in terms of one metric (e.g.; average log-odds of
probability judgments) but nevertheléss show over- or undercon-
fidence when evaluated in terms of a different metric (e.g.; average.

" probability : judgments).. This discrepancy - will ' occur - whenever
“there is variability in the judgments and the transformation from

one metric to another-is nonlinear, Although based on the same
model, this conclusion is quite different from Erev et al.’s stated
conclusion that some over- or underconfidence may be an artifact
of error in judgment and response processes.

Summary and Conclusion

I have argued that it is inappropriate to treat constructed true
judgments as more fundamental than the data from which they are
derived, and therefore that over- or underconfidence in observed
responses shorild not be dismissed based on models of well-
calibrated true' judgments perturbed by error. Furthermore, use of
the terms true judgment and error may contribute 'to these
problems. .

The oft-asked question “Are people really overconfident?” (cf.
Ayton & McClelland, 1997) is best answéted, like many other
questions, by “It depends.” Empirically, calibration quality, how-
ever defined, depends on the tasks presented and the particular
judges tested. Furthermore, the answer might be complex because
different data analyses may yield somewhat different conclusions.
This s not a limitation of the data enalysis so much as a direst
consequence of asking an overly general question. We can best
understand humhan behavior by describing the behavioral data we
gather in its full richness and complexity, and then extracting the
simple laws or regularities in the data. A specific interpretation of
an extracted regularity ought not take precedence over the regu-
larity itself. If, in some task, people provide confidence ratings of
90% but are correct only 75% of the time, we can reasonably say
that their statements of 90% confidence are, on the whole, over-
confident. Whether this empirical result is seen as a consequence
of variability in judgment, or a transformation from psychological
units to verbal units, does not change the empirical pattern.

The constructed true judgments would be more appropriately
named if it were shown that they predicted o messure that is ssen
as a more important manifestation of subjective probability. For
example, perhaps the true judgments ¢ (defined in log-odds) are
more closely related to a measure of subjective probability derived
from choices among actions, rather than a direct numerical prob-
ability statement. If we define the choice-derived measure as the
“true subjective probability of interest,” then it might be reason-
able under appropriate conditions to say that calibration of stated
probabilities is partially biased or artifactual, relative to the choice-
derived measure. Such claims, of course, require that we opera-
tionally define the measure of fundamental interest. A definition in
terms of log-odds (or any other transformation) without justifica-




946 R THEORETICAL NOTES

tion to support that dcf“initipn_as fundamental is not a firm foun-
- dation on which to make strong claims about “true” calibration,
.. The famous statement that “all models are wrong, but some
‘:models are useful” (usually atiributed to statistician George Box)
ncourages both the use of mathematical and statistical models, as
well as caution in the interpretation of the entities in the models.
“The models proposed by Erev et al. (1994) indeed do an excellent
job of clarifying important structure in judgment data, as do many
other models that invoke stochastic latent variables. It is essential,

though, to maintain appropriate interpretations of the entities cre-

ated in the models. In. the case of' Erev-et al.’s model, the.con-
structed true judgments should not trump the observed responses
as the appropriate measure to be evaluated for judgment quality or
coherence. ’
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